
Physics (H)- SEM-II_CC IV: WAVES AND OPTICS Online Class-3 

Topics to Cover: Linearity and Superposition Principle. Superposition of two collinear oscillations 

having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear 

Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences. 

Already discussed in class: a) Linearity and Superposition Principle. b) Superposition of two collinear 

oscillations having equal frequencies and different frequencies (Beats). 

Today we’ll discuss the resultant motion due to superposition of a large number of simple harmonic 

motions of same amplitude (a) and same frequency () along the x-axis but increasing progressively 

in phase by the phase angle φ. 

Let the superposing simple harmonic motions are given by 

X1 = a sin ωt, 

X2= a sin (ωt + ), 

X3 = a sin (ωt + 2), 

….. 

….. 

XN = a sin [ωt + (N −1) ]. 

Hence, resultant oscillation is given by, X = Σ Xi 

 

Vector addition method: 

The resultant amplitude may be obtained by the vector polygon method (see the figure). The 

polygon OABCO is drawn with each side of length a and making an angle  with the neighbouring 

side. Respective oscillations are shown by chords of equal length = a of a circle of radius r (say). The 

resultant has the amplitude AC with the phase angle CAB =  with respect to the first vibration.  

The first oscillation, X1 = a sin ωt, is depicted by chord AB and resultant of superposition of 

all the N oscillations is depicted by chord AC of length R and resultant oscillation makes an angle 

CAB =  with the first oscillation AB. 

We have to find out R and  

As each chord makes an equal angle  at the centre O, hence angle subtended by chord AB, AOB = 

, and that by the chord AC, AOC =N 

 Now from the geometry of the figure we have AB = 𝑎 = 2𝑟𝑠𝑖𝑛  and the resultant displacement  

 



 

AC = 𝑅 = 2𝑟𝑠𝑖𝑛  

Hence, 𝑅 = 𝑎  

Also, OAB = −

 

OAC = −

 

And  = CAB = OAB - OAC =
( )

 

Hence, resultant oscillation is given by,  

X = Σ Xi  

= R sin (ωt + ) = 𝑎 sin 𝜔𝑡 +
( )

; 

 
Note 1: If the number of superposing vibrations is very 

large ( i.e., N   ) and  amplitude becomes very small 

(i.e., a  0) but phase  increases continuously in same 

interval then the polygon will become an arc of a circle and 

the chord joining the first and the last points of the arc will 

represent the amplitude of the resultant vibration (see figure 

). When the last component vibration is at A or at B then the 

resultant vibration will be given by vector 𝑂�⃗� and 𝑂𝐵 

respectively. But if tip of the last vibration be ad D then the 

first and the last component vibration are in opposite phase 

and the amplitude of the resultant vibration, 𝑂�⃗� = diameter 

of the circle. When the last component vibration E is at O, 

the first and the last component vibrations are in phase, the 

polygon becomes a complete circle and the amplitude of the 

resultant vibration is zero. 

 

Note 2: When the successive amplitudes of a large number 

of component vibrations decrease slowly and the phase 

angles increase continuously the polygon becomes a spiral 

called Cornu spiral 



Analytical method: 

Let the superposing simple harmonic motions are given by 

X1 = a sin ωt, 

X2= a sin (ωt + ), 

X3 = a sin (ωt + 2), 

….. 

….. 

XN = a sin [ωt + (N −1) ]. 

Hence, resultant oscillation is given by, X = Σ Xi 

 = a sin ωt [1 + cos  + cos 2 +...+ cos (N –1) ] + a cos ωt [0 + sin  + sin 2 +...+ sin (N –1) ], 

= R cos θ sin ωt + R sin θ cos ωt 

= R sin (ωt + θ)  

Where, R cos θ = a [1 + cos  + cos 2 +.... + cos (N – 1) ], 

And, R sin θ = a [0 + sin  + sin 2 +.... + sin (N – 1) ]  

We have to find out values of R cos θ = a [1 + cos  + cos 2 +.... + cos (N – 1) ], 

and R sin θ = a [0 + sin  + sin 2 +.... + sin (N – 1) ] 

To do this we have to use complex algebra, where we can express 𝑒 ∅ = 𝑐𝑜𝑠∅ + 𝑖𝑠𝑖𝑛∅ 

also we can write,  

cos  +  cos 2 +. . . . + cos (𝑁 –  1) = Real part of (𝑒  + 𝑒  + 𝑒  + ⋯ + 𝑒 ( )) 

And, 

sin  +  sin 2 +. . . . + sin (𝑁 –  1) = Imaginary part of (𝑒  + 𝑒  + 𝑒  + ⋯ + 𝑒 ( )) 

Now,  

𝑒 ∅ + 𝑒 ∅ + 𝑒 ∅ + ⋯ + 𝑒 ( )∅ ; here φ is any arbitrary angle. 

= 𝑒 ∅ + (𝑒 ∅) + (𝑒 ∅) + ⋯ + (𝑒 ∅)( ) 

[This is a G.P. series of (N-1) terms having 1st term = 𝑒 ∅ and common ratio = 𝑒 ∅,  and 𝑒 ∅ ≤ 1] 

=
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Separating real and imaginary part of the above expression we get, 

cos φ +  cos 2φ +. . . . + cos (𝑁 –  1)φ = 𝑐𝑜𝑠
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and,  sin φ +  sin 2φ +. . . . + sin (𝑁 –  1)φ = (𝑠𝑖𝑛
∅

)
( )∅

∅  

Now, R cos θ = 𝑎[1 + cos + cos 2 + ⋯ . + cos(𝑁 –  1)] 
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R sin θ = a [0 + sin  + sin 2 +.... + sin (N – 1) ]= 𝑎[
 

 ] 

Therefore, 

𝑅 = (𝑅𝑐𝑜𝑠𝜃) + (𝑅𝑠𝑖𝑛𝜃)  
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And, 𝑡𝑎𝑛𝜃 = =
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= 𝑡𝑎𝑛 ∅ 

Or, 𝜃 = ( ) 

Thus, we see, the resultant motion due to superposition of a large number of simple harmonic 

motions of same amplitude (a) and same frequency () along the x-axis but increasing progressively 

in phase by the phase angle  is a simple harmonic with amplitude and phase angle 

given by, 

𝑅 = 𝑎[
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When N is large and ∅ is small, we may write 

𝜃 ≈
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In that situation resultant amplitude becomes 𝑅 = 𝑎 =  𝑎 = 𝑎𝑁  

and the phase difference between the first component vibration X1 and Nth component vibration 

XN is nearly equal to 𝑁 = 2𝜃. 

 


